Relations between Children's Home Environment and the Neurocognitive Basis of Numerical Development

Ece Demir-Lira Department of Psychological and Brain Sciences / Stead Family of Pediatrics University of Iowa

March 12, 2025 | BIG TEN EARLY LEARNING ALLIANCE Early Math Learning in Big Ten States

Brian M. Pete . Robin J. Fogarty

CLOSE THE ACHIEVEMENT GAP Simple Strategies That Work

New data highlights 'achievement gap' for students in the US

January 29, 2025 by Daily Dodge

The Adaptic The Ignored Science That Could Help Close the Achievement Gap

There's a body of research on cognitive reading processes, so why isn't it being utilized?

ECONOMY

Education Gap Between Rich and Poor Is Growing Wider

SEPT. 22, 2015

Children from disadvantaged parental backgrounds fall behind their peers from more advantaged backgrounds

poorest districts

Each circle represents one school district. Larger circles represent districts with more students.

Sixth graders in the richest school districts are four grade levels ahead of children in the

The Geography of Racial/Ethnic Test Score Gaps, by Sean F. Reardon, Demetra Kalogrides and Kenneth Shores of Stanford

Gap in mathematical performance

- Emerge early
- Persist over time
- Achievement gaps particularly pronounced in math, sometimes more than in literacy
- Predict important life outcomes in adulthood, sometimes more than literacy does

Classan & Engel, 2013; Duncan et al., 2007; Ritchie & Bates, 2013; Siegler et al., 2012; Watts et al., 2014

MECHANISMS OF DISPARITIES

MECHANISMS OF DISPARITIES

DISPARITIES

3 grades ahead of average

2 grades ahead

1 grade ahead

About average

1 grade behind

2 grades behind

DISPARITIES

3 grades ahead of average

2 grades ahead

1 grade ahead

About average

1 grade behind

2 grades behind

3 grades ahead of average

2 grades ahead

1 grade ahead

About average

1 grade behind

2 grades behind

Children recruit *different* systems in the brain a function of their home experiences

as

3 grades ahead of average

2 grades ahead

> 1 grade ahead

About average

1 grade behind

2 grades behind

3 grades ahead of average

2 grades ahead

1 grade ahead

About

1 grade behind

2 grades behind

Home environment and the neurocognitive basis of numerical processing in preschoolers

in school

SES and the neurocognitive basis of arithmetic processing in school aged children

SES and the neurocognitive basis of arithmetic processing in school aged children

LANGUAGE AREAS Left MTG x = 62, y = 42, z = 2

z = 5

SPATIAL AREAS Right IPS x = 38, y = 52, z = 45

on par with their peers

• What are the home experiences that give rise to these differences?

• Children recruit different systems in the brain as a function of their experiences, sometimes to perform

Home environment and the neurocognitive basis of numerical processing in preschoolers

in school

Neurocognitive basis of symbolic numerical processing

- Developmental specialization of left parietal regions
- Fronto-parietal shift over the course of development

Ansari et al., 2015; Bugden et al., 2012; Cantlon et al., 2006; DeSmedt et al., 2013; Edwards et al., 2015; Emerson & Cantlon, 2014; Holloway et al., 2010; Piazza et al., 2007; Sokolowski et al., 2017; Vogel et al., 2015

Bugden et al., 2016, COBS

Neurocognitive basis of symbolic numerical processing

- Developmental specialization of left parietal regions
- Fronto-parietal shift over the course of development

Ansari et al., 2015; Bugden et al., 2012; Cantlon et al., 2006; DeSmedt et al., 2013; Edwards et al., 2015; Emerson & Cantlon, 2014; Holloway et al., 2010; Piazza et al., 2007; Sokolowski et al., 2017; Vogel et al., 2015

Bugden et al., 2016, COBS

Home math environment and the neurocognitive basis of numerical processing in preschoolers

Symbolic comparison comparison

Home numeracy environment and the neurocognitive basis of numerical processing in preschoolers

Parent-child numeracy activities questionnaire

Formal: e.g. doing math in your head (asking) your child 2+2), memorize math facts, counting

Informal: e.g. measuring while cooking, talking about time

Parent-child three bags task

Number talk: Number of number words (one, two, three) or amount words parents say (a lot, many)

Age differences underlying symbolic number comparison

Age differences underlying symbolic number comparison *differs* as a function of home numeracy environment (HNE)

- ROI1 left frontal
- ROI2 right frontal
- ROI3 left parietal
- ROI4 right parietal

Child Age (year)

Age differences underlying symbolic number comparison differs as a function of home numeracy environment (HNE)

ROI

- ROI1 left frontal
- ROI2 right frontal
- ROI3 left parietal
- ROI4 right parietal

Age differences underlying symbolic number comparison differs as a function of home numeracy environment (HNE)

ROI

- ROI1 left frontal
- ROI2 right frontal
- ROI3 left parietal
- ROI4 right parietal

Age differences underlying symbolic number comparison differs as a function of home numeracy environment (HNE)

ROI

- ROI1 left frontal
- ROI2 right frontal
- ROI3 left parietal
- ROI4 right parietal

Intervention implications

their peers, then do they need *different* supports to succeed?

• Visuospatial support? Verbal support? Transitional support?

- If children recruit *different* systems in the brain as a function of their experiences to perform on par with

Intervention implications

their peers, then do they need *different* supports to succeed?

• Visuospatial support? Verbal support? Transitional support?

- If children recruit *different* systems in the brain as a function of their experiences to perform on par with

What is the role of a 6-week parent-administered home book-reading intervention?

Visuospatial support? Verbal support?

Tilbe Göksun & Begüm Yılmaz Koç University, Türkiye

6-week parent-administered home book reading intervention increases parental math talk

Parental math talk

Condition

- 1 Math Book Gestures Encouraged
- 2 Math Book Gestures Restricted
- 3 No Math Book

6-week parent-administered home book reading intervention increases parental math talk

Parental math talk

Condition

- 1 Math Book Gestures Encouraged
- 2 Math Book Gestures Restricted
- 3 No Math Book

3 grades ahead of average

2 grades ahead

1 grade ahead

About

1 grade behind

2 grades behind

- Special thanks to the Development, Experience, and Neurocognition (DEN) Lab members
- Families and children who participated in our studies
- Funding agencies
- Collaborators
- Thank you!

James Booth

Tilbe Göksun

Begüm Yılmaz

Eunice Kennedy Shriver National Institute of Child Health and Human Development

University of Iowa Stead Family Children's Hospital

Sinem Erdogan

Ying Li

Paige Nelson

Haley Laughlin

